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INTRODUCTION 

Natural materials (such as rock and soil) are invariably affected by structural defects, mineralogy, 
grain size, porosity, degree of weathering and anisotropy. Therefore the reliable estimates of their 
properties are very important. This can be easily achieved in the two steps. In the first one we 
obtained the probability distributions, which give us both the range of values that the variable could 
take and relative frequency of each value within the range and in the second one execute stochastic 
estimation. This paper is focused on the demonstrating the use of Latin Hypercube Sampling (LHS) 
to describe stochastic estimation of the rock mass parameters due the variability of their mechanical 
properties. The procedure of the founding the appropriate distribution for the measured properties of 
rock or soil specimens using QC-Expert software is described after short introduction. In the 
following part the basic simulation techniques are shortly mentioned while Latin Hypercubes 
Sampling method is described in detailed. The method of sampling is outlined in the first step. In 
the second step we described the implementation of the Log-normal distributions to the LHS 
sampling. At the end the application of the statistical analysis of the input parameters by LHS is 
mentioned. 
 

ESTIMATING THE PARAMETERS OF A STATISTICAL MODEL 

For the statistical processing for the measured properties of rock or soil specimens we used QC-
Expert software with probability module (Trilobyte, 2012). This module provides the MLE method 
(Maximum Likelihood Estimate) for deriving estimations for given data. In general, MLE method 
selects parameters that produce distribution that gives the observed data the greatest probability 
(i.e., parameters for a given statistic that make the known likelihood function a maximum). This is a 
simple, compelling concept and it has a host of good statistical properties. On the Fig. 1 is an 
example of the graphical output of the QC-Expert software with MLE criterion. 
 
DISTRIBUTION USED IN PROBABILITY ANALYSES  

One of the essential questions in the probability analyses is determination of the proper distribution 
that can be used to fit a given data set. In addition to the commonly used normal distribution there 
are a number of alternative distributions that are used in probability analyses. Experts opinion on 
the choosing the distribution in accordance with the define properties or events is disunited and 
therefore we mentioned some of the most useful distribution only. 

Normal or Gaussian distribution is the most common type of probability distribution function 
and the distributions of many random variables conform to this distribution. It is generally used for 
probabilistic studies in geotechnical engineering unless there are good reasons for selecting a 
different distribution. Typically, variables that arise as a sum of a number of random effects, none 
of which dominate the total, are normally distributed. The using of the normal distribution as a basis 
for a Monte Carlo analysis in certain investigations can cause numerical instability. 
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Beta distribution is very versatile distribution which can be used to replace almost any of the 
common distributions and which do not suffer from the extreme value problems because the range 
is bounded by specified values. 

Exponential distribution is sometimes used to define events such as the length of discontinuities 
in a rock mass, rock bursts etc. 

Lognormal distributions is useful when considering processes such as the crushing of aggregates 
in which the final particle size results from a number of collisions of particles of many sizes moving 
in different directions with different velocities. 

Weibul distribution is used to the outcome of tests such as point load tests on rock core in which 
a few very high values may occur. 

 

 
Fig. 1: Graphical output of the QC-Expert software 

 

SAMPLING TECHNIQUES 
Monte Carlo simulation is a well-known toll that is used to analyse random phenomena. In Monte 
Carlo simulation is the random problem transformed into several deterministic problems that are 
much easier to solve – sample inputs are used to generate sample outputs with statistical or 
probabilistic information about random output quantity. Monte Carlo simulation is simple to use 
and therefore has found much favour in geomechanics, particularly in stability analysis of rock 
slopes (McMahon, 1971). The simplest sampling scheme of a Monte Carlo simulation approach is 
to use a pseudorandom number generator to select random numbers between 0 and 1 and swap them 
with randomly generate values for each variable which will be input to the calculation. However, 
this simple (and best-known) random sampling scheme required for good accuracy and repeatability 
many samples – in practice for generating a probability distribution of the safety factor of rock 
slopes is the minimum number of selection between 200 up to 2000 (depending on the desired 
accuracy). The simulation output (random variable which depends upon random input variables, 
fields and processes) may be in several approaches. One way is to define the probability that safety 
factor F is less than a prescribed value Fp: 
 

(1) P F < F
0( ) =

n

N  
where: n = number of trials in which F < Fn , 

N = number of selections. 
Another approach (Mahtab 1992) is to plot a cumulative distribution of random F, which can be 

used to define the probability of F being less than a given value (Fig. 2). 
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Fig. 2: Cumulative distribution of Monte Carlo results (Mahtab 1992) 

 

The Generalised Point Estimate Method, developed by Rosenbleuth (Rosenbleuth, 1981) and 
discussed in detail by Harr (Harr, 1987) can be used for rapid calculation of the mean and standard 
deviation of a quantity such as a factor of safety that depends upon random behaviour of input 
variables. Hoek (Hoek, 1989), discussed the application of this technique to the analysis of surface 
crown pillar stability while Pine (Pine, 1992) has applied this technique to the analysis of slope 
stability and other mining problems. 

The Latin Hypercube sampling technique Bažant (Bažant, 1985) is a relatively recent 
development which gives comparable results to the Monte Carlo technique Latin hypercube 
sampling preserves marginal probability distributions for each simulated variables. To fulfilled this 
aim, Latin hypercube sampling constructs a highly depend joint probability density function for the 
random variables in the problem, which allows good accuracy in the response parameter using only 
a small number of samples (At al. 2001). 
 
PRINCIPLE OF LATIN HYPERCUBE SAMPLING 

The principle of Latin Hypercube sampling will be outlined for the two layers area of the shale rock 
mass (weathered and strong shale). In the case of the statistical analysis of input parameters 
influence to the tunnel deformations modelling we can conveniently dealt the Mohr–Coulomb 
failure criterion with 5 basic parameters. The parameters do not have a single fixed value and hence 
these parameters are described as random variables q1, …, q5: 
q1 = Edef deformation modulus, 
q2 = �  Poisson number, 
q3 = �  unit weight, 
q4 = c  cohesion, 
q5 = �  friction angle. 

A normal distribution has been assumed for the variables qi. This distribution is described by 
Gauss – Laplace function (Fig. 2): 

 

(2) f t
0( ) =

1

2π
⋅e

−
t 2

2  

where:  t standard variable. 
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Fig. 3: Probability density function – Gaussian distribution 

 
In the normal distribution the random variable is continuously distributed and the area under the 

probability density function (is always unity) is described by cumulative distribution function (the 
integral of the corresponding probability density function): 
 

(3)  F t( ) =
1

2π
e

−
t
2

2 ⋅ dt =1
−�

+�

�
 

where:  t standard variable. 
Cumulative distribution function gives the probability that the variable will have a value less 

than or equal to the selected value. For variables qi we assumed that falling with probability 95,45% 
to the entered range: 

 

(4)  F t( ) =
1

2π
e

−
t
2

2 ⋅ dt = 0, 954
−2

+2

�  

where: t standard variable. 
The vertical axis of the graphical representations of a cumulative distribution function has been 

standardized so the values of the variables qi are within range <0,1> (Fig. 4). The correlation has 
been made using the following equation: 

 

(5) q
i

=
a +b

2
+q

i

' ⋅
b −a

2
 

where: a  lower limit of the variable qi, 
 b upper limit of the variable qi. 
 

Diagram of the distribution function of the input parameters qi has been uniformly divided into 
N = 5 non-overlaying intervals �qik (k=1,2,…,N) with the same probability of accuracy. For the 
middle points of the non-overlaying intervals �qik has been set the norm values qi´ (Table 1).  
 

Table 1: Normed values qi´ 

F(qi´) 0.1 0.3 0.5 0.7 0.9 
qi´ -0.64 -0.26 0 0.26 0.64 

Interval No. used for qi 1 2 3 4 5 
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Fig. 4: Dividing the distribution function into 5 intervals 

 
Afterwards the non normed input parameters qi has been converted and then the table of the 

random permutation for individual parameters was generate (Fig. 5). Thus, on computer run number 
1, the input data set 1 is formed by selecting the specific value of q1 from the interval number 4 
(q1=E) and pairing this value with the specific value of q2 selected from interval number 2 (q2=�). 
The vectors for the subsequent runs are constructed in a similar manner. Thus we can assemble 
matrix of input parameters qi for each calculation (Table 2). 
 

 
Fig. 5: Dividing the distribution function into 5 intervals 

 
Table 2: Random permutations of the input parameters qi 

Data set q1=E q2=� q3=� q4=c q5=� 
1 4 2 2 5 3 
2 1 3 5 2 1 
3 3 5 3 4 5 
4 5 1 4 3 4 
5 2 4 1 1 2 
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LOG-NORMAL DISTRIBUTION IN LHS  

This part of the paper describes precisely the implementation of the log-normal distribution in the 
LHS. The reason for this focus on the next distribution in the LHS is that for the describing 
distribution function of the log-normal distribution we cannot use the standard function (such as in 
the Gaussian distribution). Probability density function of the log-normal distribution is defined by 
function: 

(6) f x ,µ,σ( ) =
1

xσ π
⋅e

−
lnx −µ( )

2

2σ 2
 

where: x stochastic variable (measured value), x > 0, 

 � aritmetical average, 
 � standard deviation. 

Aritmetical average and standard deviation can be expressed using the adequate values of the 

related normal distribution:  
 

(7) λ = ln µ( ) −
σ 2

2
        ζ = ln 1+

σ

µ

�

�




�


2



�
�

�

�


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 where:  x variable,  
 µ aritmetical average, 
 σ standard deviation, 
 λ  aritmetical average ln(x), 
 ζ standard deviation ln(x). 
 

Cumulative distribution function (Fig. 6) can be expressed by error function: 
 
 

  
 

where: µ aritmetical average, 
  σ standard deviation,  
  erf  Gaussian error function. 
Function erf (Figure 7) is not the elementary function and can be described by Taylor row: 

 

(9) erf x( ) =
2

π

−1( )
n

x
2n+1

n! 2n +1( )n=0

�

�
 

where: x variable, 
 n serial number in the row. 
 

We can determine the interval of the log-normal distribution (using margin qinf, qsup) that 
includes input parameters (measured values) with probability 95%: 
 

(10) q
inf

;q
sup

= e
λmk

n
ζ

= e
0,624m1,647×0,357

 
 where: qinf bottom limit of the interval  (from left), 
 qsup upper limit of the interval  (from right), 
 λ  aritmetical average ln(x), 
 ζ standard deviation ln(x), 
 kn quantile. 

(8) F x ,µ,σ( ) = 0,5+
1

2
erf

ln x( ) − µ

σ 2





�
�

�

�



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Fig. 6:  Log-normal distribution – CDF                           Fig. 7: Erf function 

 
Mathematical relation between input mean, error function and parameters of the normal distribution 
(µ and σ) are describe using following equations: 
 

 
where: σ standard deviation, 
 µ aritmetical average, 
 input arithmetic mean > 0, 

 error factor  >1.
  

LHS APPLICATION  

Prague metro line A Extension is 6134 m long and comprises of four stations, initial works started 
in April 2010 and the construction will go into service in 2014. All underground stations (except 
Motol station) are mined using NATM. The running tunnel from Vypich to Motol (two tracks) is 
excavated using NATM, the other tunnels (single track) are driven by two tunneling machines of 
EPBS type. Above described LHS method was applied to verify a change in the Petřiny station 
construction concept. The Petřiny station is the single vault mined station with cross section area of 
266 m2 and the length of 217 m – Fig. 8. The station excavations sectioning consists of two side-
wall drifts and one central core due to very difficult geological conditions. The side-wall drifts have 
cross section area of 70 m2 and are sub-divided into top heading, bench and invert. The numerical 
analysis was carried out using 3D FEM (Fig. 9) by the MIDAS GTS program (Kožoušek 2010). 
The results of statistical study for station Petřiny are shown in Table 3. They show that final 
settlements of the tunnel lining will be with probability 95% between values 10,9 mm and 13,5 mm. 
The interval of final surface settlement above excavated station is from 5,5 mm 6,9 mm.  
 

Table 3: Results for Petřiny  station - settlement in mm 
Calculation Final surface Final station Left side-wall surface Left side-wall  tunnel 

1 6,5 10,2 2,2 4,1 

2 4,9 11,1 2,5 4,7 

3 5,9 13 3,4 6,2 

4 6,9 13 1,68 3,4 

5 6,6 13,8 2,4 6,6 

X (average) 6,2 12,2 2,4 5,0 

X + 2s, X - 2s 5,5  -  6,9 10,9  -  13,5 1,8  - 3,0 3,8  - 6,2 
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Fig. 8: Cross-section through Petřiny station               Fig. 9: 3D model of the Petřiny station in Midas - GTS 

 

CONCLUSIONS 

Latin Hypercubes method is advantageous procedure for qualified statistical evaluation of rock or 
soil parameters. This method makes possible radical time saving in regards to common statistical 
methods (Monte Carlo, estimations of probability moments etc.). Also Latin Hypercubes method is 
not bonded with concrete rock mass classification. LHS ensures that the ensemble of random 
numbers is representative of the real parameters variability. The methods of the LHS application 
described in this paper are crucial to the use of numerical models (common FEM) in geotechnical 
analyses.   
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